
COMPUTATIONS OF MOMENTS FOR DISCOUNTED
BROWNIAN ADDITIVE FUNCTIONALS

SADAO SATO AND MARC YOR

1. Introduction

Let (Bt) be the one dimensional standard Brownian motion and (`xt )
be its local time at x. Then the discounted local time at x is defined
by

Lx =
∫ ∞

0
e−sds`

x
s . (1.1)

And we also define the discounted time spent above x:

Ax =
∫ ∞

0
e−s1(Bs>x)ds. (1.2)

In [BW1], M. Baxter and D. Williams study the law of the functional
A = A0. In their approach, the following symmetry property is funda-
mental.

A
law
= 1− A under P0. (1.3)

Moreover, with the help of the differentiability in x of the Laplace trans-
form of Ax, they obtained a double recurrence formula for the moments
and its asymptotic law. In [BW2], they extended their considerations
to a large class of diffusion processes.

In [Y1], the author studied the joint moments of L(= L0) and A,
explaining the differentiability property obtained in [BW1] as a conse-
quence of the following formulae:

Ax =
∫ ∞
x

dy
∫ ∞

0
e−sds`

y
s =

∫ ∞
x

dyLy (1.4)

And the symmetry property may also be extended in the joint form:

(L,A)
law
= (L, 1− A) under P0. (1.5)

Then, with the help of the right and left derivatives at x = 0 of the
joint Laplace transform of Lx and Ax, he obtained a double recurrence
formula for joint moments.
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Let µ(dx) be any Radon measure on R and define (the terminal value
of) a general discounted Brownian additive functional:

F (µ) =
∫
R

µ(dx)
∫ ∞

0
e−sds`

x
s (1.6)

as well as its moments function:

Mn(x, µ) = Ex[F (µ)n]. (1.7)

In this paper, we show a general recurrence formula for this sequence.
Although our method is very simple, it may be applied to a general dif-
fusion process. Here, we study only Brownian functionals. Using this,
we can easily get the joint moments of A and L. We also obtain some
direct induction formulas. Moreover, we are also led to discuss certain
integral equations, which are satisfied by the characteristic functions.
We would like to mention some related papers which deal with the
laws, or moments, of additive functionals of Markov processes, includ-
ing Meyer[M], Pitman-Yor[PY1],[PY2].

2. a general formula for moments

First, we define

Lx(k) =
∫ ∞

0
e−ksds`

x
s . (2.1)

We omit the index (k) when k = 1 and x when x = 0. Thus we use the
abbreviations L = L0

(1), L
x = Lx(1), and so on. Define the stopping time

Ta = inf{t;Bt = a}. (2.2)

We recall the following fundamental facts.

Lemma 1.

Ex[e
−kTy ] = e−

√
2k|x−y|. (2.3)

Ex[L
y
(k)] =

1√
2k
e−
√

2k|x−y|. (2.4)

This latter quantity is the resolvent density of Brownian motion.

Proof. The first formula is elementary. We show the second. Let θ be
an independent exponential time with parameter k. It is well-known
that `0

θ is also an exponential variable with parameter
√

2k(see [Y2,
Prop.3.2]). Therefore, we have

E0[L0
(k)] = E[`θ] =

1√
2k
. (2.5)



By the Markov property, we get

Ex[L
0
(k)] = E0[L0

(k)]Ex[e
−kT0 ] =

1√
2k
e−
√

2k|x|. (2.6)

�

We introduce the notation

F(k)(t, µ) =
∫
R

µ(dx)
∫ ∞
t

e−ksds`
x
s , (2.7)

and we write

F(k)(µ) = F(k)(0, µ), (2.8)

which is a so-called discounted additive functional. In particular, we
have

Lx(k) = F(k)(δx(dy)). (2.9)

We consider the moments (1.7). Since `xt is jointly continuous and using
the Markov property, we have

Mn(x, µ) = −Ex[
∫ ∞

0
d{F (t, µ)n}]

= nEx[
∫
R

µ(dy)
∫ ∞

0
F (t, µ)n−1e−tdt`

y
t ]

= nEx[
∫
R

µ(dy)
∫ ∞

0
Mn−1(Bt, µ)e−ntdt`

y
t ].

On the support set of dt`
y
t , we have Bt = y. Therefore we get

Mn(x, µ) = nEx[
∫
R

µ(dy)
∫ ∞

0
Mn−1(y, µ)e−ntdt`

y
t ]

= nEx[
∫
R

µ(dy)Mn−1(y, µ)Ly(n)]

= n
∫
R

µ(dy)Mn−1(y, µ)Ex[L
y
(n)]

= n
∫
R

µ(dy)Mn−1(y, µ)
e−
√

2n|x−y|
√

2n
(by Lemma 1).

We now introduce the integral operators:

H(n)
µ φ(x) =

∫
R

µ(dy)φ(y)
e−
√

2n|x−y|
√

2n
.

We suppress µ when the measure with respect to which it is related is
obvious. Thus we proved

Theorem 1.

Mn(x, µ) = nH(n)Mn−1(x, µ) = n!H(n)H(n−1) · · ·H(1)1.



More generally, we have

Theorem 2. Let µ(dx) and ν(dx) be any pair of positive Radon mea-
sures on R. Then we have

Ex[F (µ)nF (ν)m] = n
∫
R

µ(dy)Ey[F (µ)n−1F (ν)m]Ex[L
y
(n+m)]

+m
∫
R

ν(dy)Ey[F (µ)nF (ν)m−1]Ex[L
y
(n+m)].

Proof. The proof is almost the same as above, because

Ex[F (µ)nF (ν)m] = −Ex[
∫ ∞

0
d{F (t, µ)nF (t, ν)m}]

= nEx[
∫
R

µ(dy)
∫ ∞

0
F (t, µ)n−1F (t, ν)me−tdt`

y
t ]

+mEx[
∫
R

ν(dy)
∫ ∞

0
F (t, µ)nF (t, ν)m−1e−tdt`

y
t ].

�

Remark 1. The above discussion clearly holds for a diffusion process,
which has local times. In the most abstract sense, this is an applica-
tion of the optional projection and the formula of integration by parts
with respect to optional increasing processes (see [DM]). In a restricted
sense, it can be understood in terms of Markov potential theory. Under
some conditions, there exists a bijective correspondance between the AF
(At) and the associated measure νA(so-called Revuz measure, see [R]):

Ex[
∫ ∞

0
e−αtdAt] =

∫
Uα(x, y)νA(dy).

Then we can easily obtain

Ex[F
n] = n

∫
Un(x, y)Ey[F

n−1]νA(dy),

where

F =
∫ ∞

0
e−tdAt.

Example 1. (Cf. [Y1, Prop. 1 ]) We consider L and its moments.
Since µ(dy) = δ0(dy), we have

H(n)φ(x) = φ(0)Ex[L
0
(n)]. (2.10)

Therefore

E[Ln] = nE[L0
(n)]E[Ln−1]

=

√
n

2
E[Ln−1] =

√
n!

2n
.



Example 2. Let µ(dy) = 1(y>0)dy. Then

H(n)φ(x) =
∫ ∞

0
dyφ(y)

1√
2n
e−
√

2n|x−y|.

Therefore, we have

Ex[A
n] =

√
n!

2n

∫ ∞
0

dy1e
−
√

2n|x−y1|
∫ ∞

0
dy2e

−
√

2(n−1)|y2−y1|

· · ·
∫ ∞

0
dyne

−
√

2|yn−yn−1|.

And we can get for x > 0,

Ex[A] = 1− 1

2
e−
√

2x

Ex[A
2] = 1− e−

√
2x +

1

2
√

2
e−2x

Ex[A
3] = 1− 3

2
e−
√

2x +
3

2
√

2
e−2x + e−

√
6x(

1

4
− 3

4
√

2
)

Ex[A
4] = 1−2e−

√
2x+

3
√

2

2
e−2x+e−

√
6x(1− 3√

2
)+e−

√
8x(−1

4
−
√

3

4
+

3
√

6

8
).

Clearly there exists a recurrence rule for this sequence, which will be
established in the next section. Moreover, for x < 0, from the above or
from the Markov property, we deduce the simple formula

Ex[A
n] = e

√
2nxE0[An]. (2.11)

Example 3. Let µ(dy) = δa(dy) and ν(dy) = δb(dy). By Theorem 2,
we have

E0[La(Lb)n] = Ea[(L
b)n]E0[La(n+1)] + nEb[L

a(Lb)n−1]E0[Lb(n+1)]

= e−
√

2n|b−a|

√
n!

2n
e−
√

2(n+1)|a|√
2(n+ 1)

+ nE0[La−b(L)n−1]
e−
√

2(n+1)|b|√
2(n+ 1)

Then we can get

E0[LaLb] =
1

2
√

2
e−
√

2|b−a|(e−2|a| + e−2|b|),

E0[La(Lb)2] =
1

2
√

3
e−
√

2|b−a|(e−
√

6|a| + e−
√

6|b|(1 + e−2|b−a|)).



3. moments of L and A

It will be quite convenient to consider the moments of linear combi-
nations of A and L, for which we introduce the notation:

Mn(x) = Ex[(αA + βL)n] Mn ≡Mn(0) = E0[(αA + βL)n]
(3.1)

M−
n = E0[(−αA + βL)n]

By Theorem 1, we have

Mn(x) = n
∫
µ(dy) en(x− y)Mn−1(y), (3.2)

where

µ(dy) = α1(y>0)dy + βδ0(dy), (3.3)

en(y) =
1√
2n
e−
√

2n|y|. (3.4)

Thus, we get

Mn(x) = αn
∫ ∞

0
dy en(x− y)Mn−1(y) + β

√
n

2
Mn−1e

−
√

2n|x|.
(3.5)

By the symmetry of A, noting that y > 0, we obtain

Mn−1(y) = Ey[(αA + βL)n−1] = Ey[(α(1− A−) + βL)n−1]

=
n−1∑
k=0

(
n− 1

k

)
αn−1−kEy[(−αA− + βL)k]

=
n−1∑
k=0

(
n− 1

k

)
αn−1−kEy[e

−kT0 ]E0[(−αA− + βL)k]

=
n−1∑
k=0

(
n− 1

k

)
αn−1−ke−

√
2kyM−

k

This formula shows that Mn(y) has a simple form and coefficients of

e−
√

2ky are associated to the moments. This relation is used in [Y1]
or [BW1] as one of their recurrence formulae. By substituting this to
(3.5), we obtain

Mn(x) = αn
n−1∑
k=0

(
n− 1

k

)
αn−1−kM−

k

∫ ∞
0

dy en(x− y)e−
√

2ky + β

√
n

2
Mn−1e

−
√

2n|x|.
(3.6)

Thus we have



Proposition 1.

Mn(x) =

√
n

2
M̃n(x) + β

√
n

2
Mn−1e

−
√

2n|x|, (3.7)

where

M̃n(x) =



n−1∑
k=0

(
n− 1

k

)
αn−kM−

k (
e−
√

2kx

√
n+
√
k

+
e−
√

2kx − e−
√

2nx

√
n−
√
k

) (x > 0)

n−1∑
k=0

(
n− 1

k

)
αn−kM−

k

e
√

2nx

√
n+
√
k

(x < 0). (3.8)

Moreover, the function M̃n is C1, and we also have the direct induc-
tion formula on the moments:

Mn =

√
n

2

n−1∑
k=0

(
n− 1

k

)
αn−k

M−
k√

n+
√
k

+ β

√
n

2
Mn−1. (3.9)

Proof. It suffices to prove the differentiability of M̃n at 0, which follows
from:

−
√

2k
√
n+
√
k

+
−
√

2k +
√

2n
√
n−
√
k
−

√
2n

√
n+
√
k

=
√

2(
−(
√
n+
√
k)

√
n+
√
k

+

√
n−
√
k

√
n−
√
k

) = 0.

�

Define

Φ(α, β;x) = Ex[e
αA+βL]. (3.10)

Then we have

Proposition 2. The joint Laplace transform of (A,L) is given by:

Φ(α, β;x) = 1+(eα−1)
∞∑
n=0

e−
√

2nxM−
n

n!
−1

2

∞∑
n=0

M−
n

n!

∞∑
k=1

αke−
√

2(n+k)x

k!
(1+

√
n

n+ k
)

+
β√
2

∞∑
n=0

e−
√

2(n+1)xMn

n!
√
n+ 1

(x > 0) (3.11)

Φ(α, β;x) = 1 +
1

2

∞∑
n=0

M−
n

n!

∞∑
k=1

αke
√

2(n+k)x

k!
(1−

√
n

n+ k
)

+
β√
2

∞∑
n=0

e
√

2(n+1)xMn

n!
√
n+ 1

(x < 0) (3.12)



Corollary 1.

dMn

dx
(+0)− dMn

dx
(−0) = −2βnMn−1. (3.13)

dΦ

dx
(+0)− dΦ

dx
(−0) = −2βΦ(0). (3.14)

Proof. The first relation is obtained from Proposition 1 and the second
is immediately deduced from the first. �

Moreover, we can obtain a general relation on the differentiability of
moment functions. We use the notation in the previous section.

Proposition 3. Suppose that Mn(x) = Mn(x, µ) is finite. Then we
have

dMn

dx
(a+)− dMn

dx
(a−) = −2nµ({a})Mn−1(a). (3.15)

Generally, let f(x) be a C1-function and suppose that Φ(x) = Ex[f(F (µ))]
is finite. Then we have

dΦ

dx
(a+)− dΦ

dx
(a−) = −2µ({a})Ea[f ′(F (µ))]. (3.16)

Proof. We decompose the measure

µ(dy) = µ(dy)1{y 6=a} + µ({a})δa(dy) ≡ µ1 + µ2.

Then, by Theorem 1, we have

Mn(x) = n
∫
µ1(dy) en(x− y)Mn−1(y) + n

∫
µ2(dy) en(x− y)Mn−1(y)

= n
∫
µ1(dy) en(x− y)Mn−1(y) + nµ({a})en(x− a)Mn−1(a),

where en is defined by (3.4). For |h| ≤ ε, it is easy to see

|en(x+ h− y)− en(x− y)

h
| ≤
√

2n eεen(x− y),
(3.17)

by the Lebesgue dominated convergence theorem, we get the differen-
tiability of the first term. And then, the second term gives the first
assertion. The second assertion is also proved similarly. �

Remark 2. (a)The relation (3.16) is found in [Y1, formula (10)] and
is used there to get the joint moments. Moreover, a further extension
of this relation is also given there.



(b) Suppose that µ(dy) is of the form η(y)dy for a continuous func-
tion η in a neighbourhood of x. Then Ex[f(F )] is twice differentiable
near x and we can obtain

(Ex[f(F )])′′ = 2Ex[Ff
′(F )]− 2η(x)Ex[f

′(F )].

We omit the proof. The complete discussion will appear elsewhere.

4. Integral equations

We define an integral operator by

Kφ(α) =
1√
π

∫ 1

0
ds(log

1

s
)−

1
2φ(sα). (4.1)

We denote the differential operator by D(=
d

dα
).

Lemma 2. The following properties hold:

(i) K1 = 1.

(ii) K[αn] =
αn√
n+ 1

.

(iii) K2φ =
1

α

∫ α

0
φ(t)dt(= Hφ),

where H is the so-called Hardy operator.
(iv) Kφ = 0⇒ φ = 0.
(v) αK2Dφ = φ− φ(0).

(vi) KDαKφ = DαK2φ = φ.

Proof. The proofs are almost direct and elementary. We only show
(iv)and (vi). We look at (iv) first. If Kφ = 0, then K2φ = 0. By (iii),
we conclude (iv). To see (vi), we set u = KDαKφ. Then we have

αKu = αK2D(αKφ) = αKφ (by (v)). (4.2)

By (iv), we obtain u = φ. The equality DαK2φ = φ is direct by
(iii). �

Remark 3. The property (iii) is interesting. More generally, we can
define the family of integral operators:

K(p)φ(α) =
1

Γ(p)

∫ 1

0
ds(log

1

s
)p−1φ(sα), (4.3)

where p is a positive parameter. Then it is easy to see

K(p)[αn] =
αn

(n+ 1)p
. (4.4)

Therefore we have

K(p)K(q) = K(p+q). (4.5)



In particular, we have:

K(1/2)K(1/2) = K(1) = H. (4.6)

Now we deduce the integral equations. We note the integration

1√
π

∫ 1

0
ds(log

1

s
)−

1
2 esαsk =

∞∑
n=0

αn

n!
√
n+ k + 1

(by Lemma 2 (ii)).
(4.7)

In Proposition 2, setting x = 0, we have

Φ(α, β) = 1 +
1

2
(eα − 1)E0(eF

−
)− 1

2

∞∑
k=1

M−
k

√
k

k!
{ 1√

π

∫ 1

0
ds(log

1

s
)−

1
2 esαsk−1 − 1√

k
}

+
β√
2π

∫ 1

0
ds(log

1

s
)−

1
2E0(esF )

= 1 +
1

2
(eα − 1)E0(eF

−
)− 1

2π

∫ 1

0
ds(log

1

s
)−

1
2 esα

∫ 1

0
dt(log

1

t
)−

1
2E0[F−estF

−
]

+
1

2
(E0(eF

−
)− 1) +

β√
2π

∫ 1

0
ds(log

1

s
)−

1
2E0(esF )

where

F = αA + βL and F− = −αA + βL.

On the other hand, we have

α + F−
law
= F. (4.8)

Therefore we can obtain

Φ(α, β) = 1 +
α

π

∫ 1

0

∫ 1

0
ds dt(log

1

s
log

1

t
)−

1
2 esα−stαE0[estF ]

− 1

π

∫ 1

0

∫ 1

0
ds dt(log

1

s
log

1

t
)−

1
2 esα−stαE0[FestF ]

+ β

√
2

π

∫ 1

0
ds(log

1

s
)−

1
2E0(esF )

We define

ψ(β) = E0[eβL], φ(α) = E0[eαA], Φ(α) = E0[eα(A+νL)].

Then by the above formula, we have the following integral equations

ψ(β) = 1 +
1√
2
βKψ(β) (4.9)

φ(α) = 1 + αK(eαK(e−α(φ− φ′))) (4.10)



Φ(α) = 1 + αK(eαK(e−α(Φ− Φ′))) + αν
√

2KΦ.
(4.11)

By Example 1 in section 2, we know

ψ(β) =
∞∑
n=0

βn√
n!2n

, (4.12)

which agrees with (4.9).

Proposition 4. Under the condition φ(0) = 1 and Φ(0) = 1, the
following are respectively equivalent to (4.10)and (4.11):

e−αKφ′ = −K((e−αφ)′), (4.13)

e−αKΦ′ = −K((e−αΦ)′) + ν
√

2e−αΦ. (4.14)

Proof. We only show the first equation, since the second can be shown
in the same way. By Lemma 2(v), we can write (4.10) as

αK2Dφ = αK(eαK(e−α(φ− φ′))).

Thus we get

KDφ = eαK(e−α(φ− φ′))) = −eαK(D(e−αφ)).

�

These equations have a unique solution in the space of analytic func-
tions. In fact, by expanding these with respect to the parameter, we
again get the direct induction formulas for the moments. For example,
from (4.14), we get

Mn =
1

2

n−1∑
k=0

(
n

k

)
(−1)n−1−k(1 +

√
k +
√

2(n− k)ν√
n

)Mk,
(4.15)

where Mn = E[(A+ νL)n].
We note that the equation (4.14) is an extension of the Baxter and

Williams characterization of A. Define

h(α) = αK(eα) =
α√
π

∫ 1

0
ds(log

1

s
)−

1
2 esα. (4.16)

Using the symmetry property, we see that (4.14) can be written

e−αE[h(αA + βL)] = −E[h(−αA + βL)] +
√

2βe−αE[eαA+βL],
(4.17)

where β = αν. When β is equal to zero, this is just the formula given
in [BW1].



Finally, we point out that the symmetry property of A is implied by
(4.14), since this is invariant under the transformation:

e−αΦ→ Φ, α→ −α.
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